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Abstract. Motivated by field-theoretic predictions we investigate the stable excitations that exist in two
characteristic gapped phases of a spin-1 model with Ising-like and single-ion anisotropies. The sine-Gordon
theory indicates a region close to the phase boundary where a stable breather exists besides the stable
particles, that form the Haldane triplet at the Heisenberg isotropic point. The numerical data, obtained by
means of the Density Matrix Renormalization Group, confirm this picture in the so-called large-D phase
for which we give also a quantitative analysis of the bound states using standard perturbation theory.
However, the situation turns out to be considerably more intricate in the Haldane phase where, to the best
of our data, we do not observe stable breathers contrarily to what could be expected from the sine-Gordon
model, but rather only the three modes predicted by a novel anisotropic extension of the Non-Linear Sigma
Model studied here by means of a saddle-point approximation.

PACS. 75.10.Pq Spin chain models – 11.10.St Bound and unstable states; Bethe-Salpeter equations –
11.10.Kk Field theories in dimensions other than four

1 Introduction

One-dimensional spin systems have been largely studied
since Haldane [1] proposed his conjecture. He suggested
that while half-odd integer spin chains should always be
gapless, integer-spin ones should manifest a gap. The con-
jecture is supported by a field-theoretic analysis [2] of
the lattice Hamiltonians, a typical approach for low-di-
mensional quantum systems that admit a continuum-limit
counterpart in (D + 1) dimensions. The low-energy spec-
trum of the spin Hamiltonian can be interpreted in the lan-
guage of (quasi)particles: a finite energy gap corresponds
to a massive particle at rest, and the dispersion relation
of the excitation for small momenta can be read as a rel-
ativistic (on shell) energy-momentum relation. The field-
theoretic approach proved to be extremely powerful to ex-
plain experimental data. For instance, recent observations
on spin-1/2 compounds with Dzyaloshinskii-Moriya inter-
action in external field [3–5], confirm the appearence of
effective particles, namely solitons and breathers, as pre-
dicted by the Sine-Gordon Model (SGM) that describes
the low energy spectrum of the chain.

In this paper we discuss the possibility of observing
solitons and possibly breathers in spin-1 chains with in-
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ternal anisotropies. In particular, it is important to under-
stand the role of the interactions between the particles of
the continuum theory to see how their bound and scatter-
ing states manifest in the energy spectrum of the lattice
model. The effective interactions will depend on the values
of parameters of the spin Hamiltonian and it is possible
that certain two- (or more) particle states that are stable
in a region of parameter space loose their stability when
the parameters are continuously changed. In other terms
the formerly stable state acquires a rest mass equal or
larger than the sum of the rest masses of its constituents
and, if there are no special selection rules, the particle
decays into the continuum part of the spectrum.

In this paper we study such a scenario for the following
spin-1 anisotropic model:

H =
L∑

j=1

{
Sx

j S
x
j+1 + Sy

j S
y
j+1 + λSz

j S
z
j+1 +D

(
Sz

j

)2
}
,

(1)
where λ and D parametrize the Ising-like and single-ion
anisotropies respectively. This Hamiltonian is known to
be described, in the continuum low-energy limit, by a
Non-Linear Sigma Model (NLσM) in the vicinity of the
isotropic antiferromagnetic Heisenberg point (λ = 1, D =
0) [1,2], and the SGM in the neighborhood of the critical
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line separating two gapped phases, namely the large-D
and the Haldane ones [6]. These phases will be defined
in Section 2, where we will also recall the mapping onto
the SGM and present a novel extension of the NLσM
for anisotropic integer-spin models which encompasses the
usual isotropic NLσM that lies at the basis of the Haldane
conjecture. In general we find a triplet of excitations and
no other bound states. On the contrary, from a quantita-
tive analysis of the SGM we expect that in some region
of the Haldane and large-D phases at least an additional
bound state (a breather) should appear. We proceed in
Section 3 to a numerical check of these expectations using
the multi-target Density Matrix Renormalization Group
(DMRG) technique that allows us to handle chains of up
to 100 sites and extract various excited states of the spec-
trum. The data in the large-D phase confirm the existence
of a breather in the region predicted by the SGM. On the
other hand, we do not find any stable breather in the Hal-
dane phase. In Section 4 we will sketch also a simple per-
turbative argument that provides a quantitative interpre-
tation of the data. Finally, in Section 5 we will comment
on our results and draw some general conclusions.

2 Quantum field theories for the λ – D model

Among integer spin models, the anisotropic S = 1 chain
with its rich phase diagram occupies a relevant position.
At the isotropic point, (λ = 1,D = 0) the O(3) Heisenberg
model is recovered. The full phase diagram consists of six
different phases (see [7] for a recent numerical determina-
tion). We will focus our attention on the λ > 0 half-plane
where, apart from the transition lines, all the phases show
a nonzero energy gap above the ground state (GS). In
Figure 1 we report the phase diagram in this range of
parameters. Usually, two different types of order parame-
ters are used to characterize these phases: the Néel order
parameters (NOP):

Oα
N = lim

|i−j|→∞
(−1)i−j〈Sα

i S
α
j 〉; α = x, y, z (2)

and the string order parameters (SOP):

Oα
S = − lim

|i−j|→∞
〈Sα

i e
iπ

∑ j−1
k=i+1 Sα

k Sα
j 〉; α = x, y, z, (3)

first introduced by den Nijs and Rommelse [8]. For D � 1
and D � λ the system is in the so-called large-D phase,
with a unique GS that does not break the above symme-
try: Oα

S = Oα
N = 0 for all α. Decreasing D, for λ � 3,

we have a transition into the Haldane phase. This phase
is characterized by the non-vanishing of all the compo-
nents of the SOP’s Oα

S �= 0, meaning that the Z2 × Z2

symmetry is fully broken, and by Oα
N = 0 ∀α. Inside the

Haldane phase, the gap of the first excited state, though
always different from zero, belongs to two different spin
sectors depending on the parameters λ and D. It belongs
to the Sz

tot = ±1 sector for values of λ and D above the
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Fig. 1. Phase diagram of the model (1) obtained numerically
via DMRG. The two lines passing through the isotropic point
are the loci of points where the transverse and longitudinal
gaps coincide. Circles are DMRG data whereas squares are the
results of the theoretical approach. The vertical lines across
the Haldane-large-D transitions join the points studied numer-
ically (see Sect. 3).

so-called degeneracy line (see Fig. 1). This line, which
passes through the O(3) isotropic point, divides the Hal-
dane phase into two sub-phases [9]. Below this line the first
excited state has Sz

tot = 0. The GS is always unique and
belongs to the Sz

tot = 0 sector. On the right of the Haldane
phase we find the twofold degenerate Néel phase. Here the
Z2×Z2 symmetry is only partly broken as as proved by the
fact that Oα

N = Oα
S = 0 for α = x, y but Oz

N , Oz
S �= 0. The

Haldane-large-D (H-D) and Haldane-Néel (H-N) transi-
tion lines mark second order transitions; the former is de-
scribed by a c = 1 Conformal Field Theory (CFT) while
the latter by a c = 1/2 CFT. They merge at the tricritical
point (λ ∼= 2.90, D ∼= 3.20) [6] where the Haldane phase
disappears and the large-D-Néel transition becomes first
order.

Near the isotropic point the Hamiltonian (1) can be
mapped onto an anisotropic version of the NLσM us-
ing Haldane’s ansatz [2] to decompose the spin coher-

ent states field Ωj(τ) = nj(τ)(−1)j

√
1 − �2j(τ)

S2 + �j(τ)
S

into a uniform, �j(τ), and a staggered part nj(τ) =
[nj⊥(τ), njz(τ)], satisfying the constraint |n⊥|2 + n2

z = 1.
After integration of the uniform field, one obtains the fol-
lowing effective Lagrangian density:

L =
v⊥
2g⊥

[
|∂xn⊥|2 +

1
v2
⊥
|∂τn⊥|2

]

+
vz

2gz

[
(∂xnz)

2 +
1
v2

z

(∂τnz)
2 + µzn

2
z

]
+ Lint, (4)
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where the interaction term has a simple expression only
in the regions |nz| � 1 and |n⊥| � 1. In the first region
the interaction term has the form

Lint = n2
z

[
d⊥ |∂τn⊥|2 + dz(∂τnz)2

]
,

whereas, in the region |n⊥| � 1, the interaction term has
the form

Lint = |n⊥|2
[
d⊥ |∂τn⊥|2 + dz(∂τnz)2

]
.

Here the constants g⊥(z), v⊥(z), d⊥(z), µz are different
functions of the microscopic parameters λ and D whose
explicit expressions depend on the region one considers.

As long as one deals with integer spins the topological
term arising from the combination of the Berry phases on
each site reduces to a multiple of 2π and therefore can
be safely omitted. More details on the mapping into this
anisotropic variant of the NLσM can be found in refer-
ence [10].

The constraint of unit norm makes the theory hard to
treat. In both regions, |nz| � 1 and |n⊥| � 1, we limit
ourselves to a mean-field solution that can be worked out
using the saddle-point approximation on equation (4). The
constraint is taken into account by introducing a uniform
Lagrange multiplier η. We refer the reader to reference [10]
for details and only mention that one arrives at a cou-
ple of self-consistent equations for the longitudinal and
transverse gaps ∆Ez and ∆E⊥, that play the role of the
masses of the particles of an “anisotropic Haldane triplet”.
Of course ∆Ez = ∆E⊥ at the isotropic Heisenberg point.
However, when λ and D are varied the transverse and
longitudinal channels split. Nonetheless, guided by the nu-
merical work of [9], we can search for a specific line in pa-
rameter space where the two gaps remain degenerate (in
the thermodynamic limit) even if the lattice theory has
no O(3) symmetry. Interestingly, the line found through
the self-consistent equations is in good agreement with the
one found with the DMRG as depicted in Figure 1.

Let us now see a possible connection with the SGM.
Neglecting the longitudinal field (i.e. setting nz = 0) and
writing n⊥ = eiθ, then an O(2) NLσM is recovered:

L =
1
2
v

[
(∂xΘ)2 +

1
v2

(∂τΘ)2
]

(5)

with Θ = θ/g, g =
√

(2 + 2λ+D) and v = g (for S = 1)1.
This is exactly a free Gaussian model with a bosonic field
compactified along a circle of radius 1/

√
g. We know that

this model describes a CFT with central charge c = 1 and
with primary fields having scaling dimensions:

dmn =
(
m2

4K
+ n2K

)
, (6)

with K = π/g and m,n ∈ Z.

1 In reference [6] in all the expressions after equation (6)
D has to be replaced with D/2. This replacement affects the
theoretical values of K and of the scaling dimensions, but not
their numerical estimates.

In a previous work [6] it was argued that near the
Gaussian c = 1 line the perturbed O(2) model can written
in terms of a sine-Gordon model:

L =
1
2

[
v (∂xΦ)2 +

1
v

(∂τΦ)2
]

+
vµ̄

a2
cos(

√
4πKΦ) (7)

where Φ is a compactified field dual to Θ, a is the lattice
spacing and µ̄ is a coupling constant that should vanish
exactly along the H-D transition line. K is the basic pa-
rameter that allows to compute all the scaling dimensions,
and consequently all the critical exponents, that along
the c = 1 line acquire nonuniversal values depending on
the actual values of λ and D: it ranges from the value
of K = 2 at the Berezinskii-Kosterlitz-Thouless (BKT)
point (λ = 0, D 
 0.4) to the value K = 1/2 at the
tricritical point, becoming K = 1 at the so-called free
Dirac point, λ 
 2. The SGM has a spectrum consist-
ing of a soliton, an anti-soliton and their bound states,
breathers, the number of which is different from zero only
for K ≤ 1 [11]. This means that, besides the excitations
of the c = 1/2 theory (belonging to Sz

tot = 0), in the re-
gion of the phase diagram that remains on the left side
of the free Dirac point (i.e. approximately for 0 < λ < 2,
for which 1 < K < 2) the particle content of the theory
should consist only of a soliton and an anti-soliton. When
K ≤ 1 (i.e. 2 < λ < 2.90), also a breather should appear
(and possibly a second breather for K ≥ 2/3). If this is
proved to be correct, then it would mean that the Haldane
and the large-D phases could be eventually classified into
subphases according to the number of stable particles. In
order to check this hypothesis, we have numerically an-
alyzed the spectrum of the model (1) on the λ = 1 and
λ = 2.59 lines for values of D crossing the Haldane-large-
D transition curve.

3 Numerical investigation

3.1 K > 1: no breathers

For λ = 1 the critical point on the c = 1 line has been
previously located at Dc = 0.99 with a parameter K =
1.328± 0.004 [6]; then we are in the sector of the Haldane
phase that should be characterized only by a soliton and
an anti-soliton. From CFT we know that a free Gaussian
theory for a field Θ compactified along a circle with radius√
K/π has primary fields of scaling dimensions given by

equation (6) where m plays the role of Sz
tot. The energies

of the excited states are related to the scaling dimensions
by the formula:

∆Emn = Emn−EGS =
2πv
L

(dmn + r + r̄) , r, r̄ ∈ N. (8)

The spectrum of the scaling dimension is reported in Ta-
ble 2 of reference [6]. In the language of the SGM, labelling
the states as (m,n, r, r̄), the first excited states are given
by (±1, 0, 0, 0) and belong to the Sz

tot = ±1 spin sectors.
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Fig. 2. Plots of the low-lying energy gaps versus 1/L for D =
0.90 λ = 1. The states are labeled with the quantum numbers
of the CFT (see text).

They correspond to the soliton and the anti-soliton, while
the first breather comes from the doublet (0,±1, 0, 0) that
splits into two different states as soon as one moves away
from criticality. Operatively, a breather is a singlet in the
Sz

tot = 0 spin sector. To be a stable state, the ratio between
its rest energy and that of the soliton (measured respect
to the ground state) R = ∆Eb/∆Es must be smaller than
two.

The numerical analysis has been performed with a
DMRG algorithm that exploits the so-called thick-restart
Lanczos method (see [12] for a recent review and [13]
for our implementation). We adopt periodic boundary
conditions (PBC) to avoid complicancies arising from
edge effects (midgap states and surface contributions see
e.g. [14]), and perform up to five finite-system iterations
in order to reduce the uncertainty on the energies to the
order of magnitude of the truncation error [15]. Using
M = 400 DMRG states the latter is O(10−4) or better,
the worst cases being the ones with 10 target states.

On the λ = 1 line we have studied points close the
Haldane-large-D transition as well as points inside the
gapped Haldane and large-D phases. For D = 0.85, 0.90,
0.95, 1.06, 1.11, we are still in a quasi-critical region for
which the correlation length is still larger than the size of
the system. This is confirmed by the fact that the gaps
scale substantially linearly in 1/L as predicted by equa-
tion (8), and we can label the states with the quantum
numbers of the CFT at the critical point. A typical sit-
uation is shown in Figure 2 and one sees that the states
corresponding to (0,±1, 0, 0) are still degenerate. Follow-
ing the evolution of this doublet for values of D farther
from the critical line, we can identify the first breather as
the lowest of the two splitted states.

Moving downward with D well into the Haldane phase
up to D = 0.3, 0.6, in the Sz

tot = 0 sector we observe be-

Fig. 3. Plots of the low-lying energy gaps versus L for D = 0.3
at λ = 1. States are still labeled as in Figure 2, except that
here the states (0,±1, 0, 0) have split and grey circles represent
the highest of the two. It is already possible to see the first
excitation of the c = 1/2 theory (crosses); this state appears
incomplete because for L ≥ 50 it lies outside the set of the
DMRG-targeted states.

sides a doublet state that we identify with the secondary
states (0, 0, 1/0, 0/1), two clearly separated states that are
the evolution of the (0,±1, 0, 0) doublet. This feature is
evident in Figure 3 reporting the case D = 0.3. At these
values of D the correlation length is sufficiently small,
and we extrapolated the asymptotic values of the energy
gap for both the soliton and the breather using the semi-
phenomenological formula [16]

∆E(L) = ∆E(∞) +
A

L
exp

(
−L

ξ′

)
, (9)

where the fitting parameter ξ′ is expected to be propor-
tional to the actual correlation length. We verified that
equation (9), fits better the data than other functions with
different exponents of 1/L. The extrapolated values for the
breather gaps lay slightly above the continuum threshold,
specifically we obtainR = 2.048 atD = 0.6 andR = 2.043
at D = 0.3. In addition we verified that also the lowest
state in the Sz

tot = 2 sector remains in the continuum in
the thermodynamic limit.

We pushed the analysis a little further for D ≥ 1.5. As
the correlation length is now sufficiently small we trust the
data at L = 100 without the help of any extrapolations.
The result is that also in this regime R > 2 so that there
are no stable breathers. In agreement with what observed
in [17,18], where the finite-size spectrum of the SGM is
studied, the first excitation in the sector Sz

tot = 0 lies
always above the soliton.

In summary, as far as the K > 1 region is concerned,
the numerical investigation allows to conclude that there
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Table 1. Spectrum of scaling dimensions at the point (λ =
2.59, Dc = 2.30), obtained from formula (6) where K = 0.85±
0.01 [6].

dCFT[× degeneracy] (m, n, r, r̄)
0 [×1] (0, 0, 0, 0)
0.294 ± 0.003 [×2] (±1, 0, 0, 0)
0.85 ± 0.01 [×2] (0, ±1, 0, 0)
1 [×2] (0, 0, 1/0, 0/1)
1.18 ± 0.01 [×2] (±2, 0, 0, 0)
1.29 ± 0.02 [×4] (±1, 0, 1/0, 0/1)

are no soliton bound states both in the Haldane and in
the large-D phases.

3.2 K < 1: emergence of the breather

Let’s analyze now what happens on the λ = 2.59 line,
for which we have previously checked that Dc = 2.30 and
K = 0.85 [6]. If we believe in the SGM as a faithful con-
tinuum theory of the low energy part of the model (1)
we expect the spectrum to present a stable breather both
in the Haldane and in the large-D phases. According to
the estimated K the order of the CFT energy levels is the
one reported in table 1 where we have shown the scaling
dimensions dCFT = dmn + r + r̄.

As in the case K > 1, we are interested in the soli-
ton gap originating from the (±1, 0, 0, 0) states and in the
breather coming from the (0,±1, 0, 0) states.

The correlation length now decreases rather rapidly
with |D −Dc| so that we see the off-critical regime for D
quite close to the critical point for the system sizes at our
disposal.

Inside the large-D phase we selected eight points with
D ranging from 2.39 to 3. We have checked that the corre-
lation length is indeed so small that we can use the data at
L = 100 without any finite-size scaling. The identification
of the soliton and the breather states out of the DMRG
spectrum is rather direct. Apart from a single point quite
close to the critical line, the gap ratio R is always less
than two, as shown in Figure 4. This confirms the exis-
tence of an additional stable particle that we identify as
the breather. Considering the non-monotonic behavior of
the function R (D), we can speculate whether the breather
looses its stability for very large values of D. In the next
section we will study this point by means of an analytical
approach.

In the Haldane phase, which is very narrow here, we
studied the points D = 2.2222, 2.235, 2.25. The identi-
fication of the soliton and the breather is now compli-
cated by the appearance of states which do not originate
from the c = 1 CFT. A typical numerical spectrum up
to L = 100 is shown in Figure 5. Following the states in
the Sz

tot = 0 sector, labelled by crosses, for smaller val-
ues of D we observe that their gaps decrease and eventu-
ally vanish at the c = 1/2 transition line whereas all the
other states remain massive. For this reason we identify
these states as excitations coming from the c = 1/2 CFT.

Fig. 4. Plot of the ratio R between the breather and the soliton
energy gaps at L = 100 as a function of D for λ = 2.59.
The dashed horizontal line represents the continuum threshold
while the dotted vertical line marks the critical point.

Fig. 5. Typical low-lying spectrum in the Haldane phase for
K < 1 (λ = 2.59, D = 2.235).

The doublet (triangles down) cannot be identified with
the breather being twofold degenerate; it is probably a
descendent (r = 0/1, r̄ = 1/0) of the first c = 1/2 state.
What we find is that, both at D = 2.25 and at D = 2.235,
the breather lies above the two-soliton gap continuum,
i.e. R > 2. The point D = 2.2222 lies on the “degeneracy-
line” where the soliton gap is degenerate with the level
originating from the first excitation of the c = 1/2 the-
ory. Now many states fall below the breather so that the
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Table 2. Low energy states of the unperturbed Hamiltonian
(10).

State Energy Degeneracy Name
|01 · · · 0L〉 0 1 GS
|01 · · · +j · · · 0L〉 D L Soliton
1 ≤ j ≤ L
|01 · · · +j · · · −k · · · 0L〉 2D L (L − 1) Breather
1 ≤ j �= k ≤ L

latter can no longer be seen within the numerically avail-
able levels.

4 Perturbation theory at large-D

From the data reported in Figure 4 one is led to separate
the large-D phase into two regions depending on the sta-
bility of the breather. However, the location of the curve
λstab(D) separating the two regions is still vague: it starts
from the c = 1 H-D line at the point whereK = 1, close to
λ 
 2, but we have no precise indications for larger values
of D. In this region a perturbative analysis can be carried
on. From the results quoted in [19] it is known that bound
states (at zero total momentum) do not exist for λ = 1.
Here we show that the presence of an Ising-like anisotropy
λ allows for a stabilization of breather states.

We start by treating the D-term as unperturbed
Hamiltonian

H0 ≡ D

L∑

j=1

(
Sz

j

)2
, (10)

and the rest as small perturbation

V ≡
L∑

j=1

{
1
2

[
S+

j S
−
j+1 + S−

j S
+
j+1

]
+ λSz

j S
z
j+1

}
.

Both H0 and V commute separately with the total
z-component of the spin, Sz

tot, and with the total “spin-
flip” (or “time-inversion”) operator T = exp(iπSy

tot).
However, [Sz

tot, T ] �= 0 and one can specify both quan-
tum numbers for the energy eigenstates only in the sec-
tor Sz

tot = 0. The GS falls precisely in this sector and
here we expect to find the breather. The soliton and the
anti-soliton have Sz

tot = ±1, but we can restrict to the
soliton case Sz

tot = 1 since the anti-soliton state is simply
obtained by applying T .

In Table 2 we show the GS together with the first ex-
cited states for the unperturbed Hamiltonian (10). In this
picture the “solitons” are completely degenerate and non-
interacting so that the (soliton-antisoliton) “breather’s”
energy is exactly twice that of the 1-particle states. As
we switch on the interaction V , the GS energy becomes
E(0) = −L/D+O

(
D−2

)
up to second order in perturba-

tion theory. The first excitations are no longer degenerate;
they rather form a band, labelled by the lattice momen-
tum q, E(1)

q = D + 2 cos (q) + O
(
D−1

)
. Up to first order

Fig. 6. Bound states (full lines) and continuum (region en-
closed by dashed lines) for the values of λ indicated on the
right. Full dots mark the wavenumbers Q∗ where the bound
state starts to detach from the continuum when λ < 2.

perturbation theory these 1-particle states form a con-
tinuum of two-particle scattering states whose upper and
lower edges are given by the dashed lines in Figure 6. As a
result of the interaction the soliton states may form bound
state if their energy lies below the two-particle continuum.
At first perturbative order the breather energy can be cal-
culated using the Bethe-Ansatz approach; details can be
found in Appendix A. The resulting breather states are
indexed by the center-of-mass momentum Q. Acceptable
states are those for which cos (Q/2) < λ/2. This condition
defines a characteristic wavenumber Q∗ above which the
breather form a bound state with energy

E
(2)
Q = 2D − λ− 4

λ
cos (Q/2) +O

(
D−1

)
, for |Q| > Q∗.

(11)
Note that for Q = π the bound state is always below the
continuum with an energy shift δE(2)

π = −λ. However with
the DMRG we inspect the low-lying part of the spectrum,
and in order to find a stable bound state, that will be iden-
tified with the breather, we must examine the minimum
of the continuum at Q = 0. In this case the bound states
emerges from the continuum only for λ > 2 with an en-
ergy shift δE(2)

0 = −λ−4/λ. The mechanism is illustrated
in Figure 6 for some values of λ. Interestingly enough, the
mass ratio R = ∆Eb(∞)/∆Es(∞) now reads:

R =
E

(2)
0

E
(1)
π

= 2 − 1
λ

(λ− 2)2

(D − 2)
. (12)

This equation is valid for λ > 2, meaning that the sta-
bility boundary is λstab(D) = 2 independent of D. This
result is consistent with the stability criterion provided by
the SGM: K = 1 just for λ ∼ 2 [6]. In addition the ratio
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Fig. 7. Results of first-order perturbation theory vs. DMRG
data in the large-D phase at λ = 2.59.

converges to R = 2 from below in agreement with Fig-
ure 4. The first-order approximation is also quantitatively
good in comparison to the DMRG values as shown by the
example in Figure 7.

5 Discussion of the results and conclusions

Motivated by field-theoretic predictions, in this paper
we have investigated the stability of massive excita-
tions (soliton, anti-soliton and breathers) that are present
in the large-D and Haldane phases of the anisotropic
spin-1 Heisenberg chain with both Ising-like and single-
ion anisotropy.

In excellent agreement with the SGM that is supposed
to describe the continum limit of the lattice model in the
vicinity of the H-D critical line, we have provided both
numerical and analytical results supporting the existence
of a stable breather in the large-D phase of the model (1)
in the region with λ > 2.

On the contrary, as far as the Haldane phase is con-
cerned, our best estimates do not show other stable states
in addition to the three particles that form the Haldane
triplet at the isotropic Heisenberg point. This is at vari-
ance with what we would expect from the SGM, indicating
that the latter is probably not sufficient to describe the ef-
fective interaction when there is an underlying topological
order as the one found in the Haldane phase [20]. Indeed
in this phase we may expect that we cannot neglect the
effects of an interaction between the states coming from
the c = 1 CFT describing the H-D critical line and those
pertaining to the c = 1/2 CFT describing the H-I transi-
tion.

It is interesting to speculate whether this excitation
can be observed in real materials. The so called NENC

has the advantage of having a large single-ion anisotropy
D 
 7.5 but λ = 1 in this compound. On the other
hand large Ising anisotropies are present in some spin-1/2
materials (e.g. CsCoCl3 and CsCoBr3; see [21] and refer-
ences therein). Interestingly enough, differently from exist-
ing experiments the mechanism proposed here to observe
breather states does not require the presence of external
magnetic fields.

This work was supported by the TMR network EUCLID Con-
tract No. HPRN-CT-2002-00325, and the COFIN projects,
Contracts Nos. 2002024522001 and 2003029498013.

Appendix A

In this appendix we show how to evaluate the first order
correction of the second energy level in Sz

tot = 0. The
unperturbed states are

|u(2)
j,k〉 = |01 · · · +j · · · −k · · · 0L〉, j �= k

and we need the eigenvalues of the matrix 〈u(2)
l,m|V |u(2)

j,k〉
with j �= k and l �= m. We write the — unnormalized —
eigenfunction as

|ψ(2)〉 =
∑

j,k

fj,k|u(2)
j,k〉.

The states can be classified according to the eigenvalue
of T :

T |ψ(2)〉 = τ |ψ(2)〉, τ = ±1 ⇒ fkj = τfjk.

In terms of the coefficients fjk the eigenvalue equation
reads:

(1 − δjk) [fj+1,k + fj,k−1 + fj−1,k + fj,k+1]

− λfjk (δj,k+1 + δj,k−1) = δE(2)fjk. (13)

Note that we have put the term (1 − δjk) in the left-
hand side for compatibility with the requirement fjj =
0. Now, equation (13) is an eigenvalue equation in a
L(L− 1)-dimensional space. It is actually much more sim-
ple to express the amplitudes using relative and center-of-
mass coordinates: r = j − k and ρ = (j + k)/2. From
now on we will follow closely the approach used in Mattis’
book [22] (Sect. 5.3) for the bound states of magnons in
Heisenberg ferromagnets. Consider the wave function:

fjk = exp (iQρ)F (r), F (r) =
∑

p

f(p) exp (ipr) , (14)

where Q and p denote the total and relative momenta
respectively, both ranging in (−π, π]. The eigenvalue of
T reflects directly in the parity of the Fourier transform:
f(−p) = τf(p), while the constraint fjj = 0 becomes
F (0) =

∑
p f(p) = 0. When (14) is plugged into (13)
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a common factor exp (iQρ) can be simplified from both
members and we are left with the simpler equation:

(1 − δr,0) cos
(
Q

2

)
[F (r + 1) + F (r − 1)]

− λF (r)(δr,1 + δr,−1) = δE(2)F (r), (15)

that appears as a finite-differences Schrödinger equation
with a δ-potential at r = ±1. From now on we fix τ = 1;
the procedure for τ = −1 is analogous and the conclusions
are exactly the same. In momentum space equation (15)
becomes:

4f(p) cos
(
Q

2

)
cos p− 2

L

[
λ cos p+ 2 cos(

Q

2
)
]

×
∑

p′
f(p′)cosp′ = δE(2)f(p). (16)

Were it not for the λ-term, the spectrum of eigenval-
ues δE(2)(Q, p) would be identical to that of two non-
interacting soliton and anti-soliton with energy (2 cos q +
2 cos q′) = 4 cos(Q/2) cos p with Q = q + q′ and p =
(q − q′)/2. In the thermodynamic limit L → ∞ at a
given Q these form a continuum −4 cos(Q/2) ≤ δEcont ≤
4 cos(Q/2). Hence, defining E ≡ δE(2)/4 cos(Q/2), the
bound states will be searched in the region |E| > 1. Equa-
tion (16) can be solved formally as:

f(p) = Γ
C cos p+ 1
cos p− E , (17)

where C = λ/[2 cos(Q/2)] and

Γ ≡ 1
2π

∫ π

−π

dp f(p) cos p. (18)

Now, re-inserting (17) into (18), self-consistency demands
that either Γ = 0 or:

1 =
1
2π

∫ π

−π

dp cos p
C cos p+ 1
cos p− E .

Evaluating the integral the energy equation becomes:
√

E2 − 1
|E|2 =

CE + 1
CE .

With λ > 0 one has a solution either for E > 1
or for E ≤ min(−1,−C−1). Under these conditions
the solution reads E = −(1 + C2)/2C. The condi-
tion E ≤ −C−1 should be imposed for C < 1 but
then the requirement would be C ≥ 1. So we can only

accept the case C > 1 for which E < −1 is always fullfilled.
It can be also seen that

∑
p f(p) = 0 is automatically sat-

isfied if we build f(p) from equation (17). The restriction
C > 1 can be re-expressed as cos(Q/2) < λ/2 and defines
a characteristic wavenumber Q∗ above which the bound
state with energy

δE(2)(Q) = −λ− 4
λ

cos2
(
Q

2

)
, |Q| ≥ Q∗

emerges from the continuum. This is precisely the result
of equation (11).
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